{menu} {mirror}



Fundamental (PHP) Algorithm Analysis

Head Permutations Using a Linear Array of 5 Numbers
EXAMPLE_01 Output where N = 5
Sequence Output Indexes Swapped
1 1 2 3 4 5 No Swap
2 2 1 3 4 5 swapped(0, 1)
3 3 1 2 4 5 swapped(0, 2)
4 1 3 2 4 5 swapped(0, 1)
5 2 3 1 4 5 swapped(0, 2)
6 3 2 1 4 5 swapped(0, 1)
7 3 2 4 1 5 swapped(2, 3)
8 2 3 4 1 5 swapped(0, 1)
9 4 3 2 1 5 swapped(0, 2)
10 3 4 2 1 5 swapped(0, 1)
11 2 4 3 1 5 swapped(0, 2)
12 4 2 3 1 5 swapped(0, 1)
13 4 1 3 2 5 swapped(1, 3)
14 1 4 3 2 5 swapped(0, 1)
15 3 4 1 2 5 swapped(0, 2)
16 4 3 1 2 5 swapped(0, 1)
17 1 3 4 2 5 swapped(0, 2)
18 3 1 4 2 5 swapped(0, 1)
19 2 1 4 3 5 swapped(0, 3)
20 1 2 4 3 5 swapped(0, 1)
21 4 2 1 3 5 swapped(0, 2)
22 2 4 1 3 5 swapped(0, 1)
23 1 4 2 3 5 swapped(0, 2)
24 4 1 2 3 5 swapped(0, 1)
25 5 1 2 3 4 swapped(0, 4)
26 1 5 2 3 4 swapped(0, 1)
27 2 5 1 3 4 swapped(0, 2)
28 5 2 1 3 4 swapped(0, 1)
29 1 2 5 3 4 swapped(0, 2)
30 2 1 5 3 4 swapped(0, 1)
31 2 1 3 5 4 swapped(2, 3)
32 1 2 3 5 4 swapped(0, 1)
33 3 2 1 5 4 swapped(0, 2)
34 2 3 1 5 4 swapped(0, 1)
35 1 3 2 5 4 swapped(0, 2)
36 3 1 2 5 4 swapped(0, 1)
37 3 5 2 1 4 swapped(1, 3)
38 5 3 2 1 4 swapped(0, 1)
39 2 3 5 1 4 swapped(0, 2)
40 3 2 5 1 4 swapped(0, 1)
41 5 2 3 1 4 swapped(0, 2)
42 2 5 3 1 4 swapped(0, 1)
43 1 5 3 2 4 swapped(0, 3)
44 5 1 3 2 4 swapped(0, 1)
45 3 1 5 2 4 swapped(0, 2)
46 1 3 5 2 4 swapped(0, 1)
47 5 3 1 2 4 swapped(0, 2)
48 3 5 1 2 4 swapped(0, 1)
49 4 5 1 2 3 swapped(0, 4)
50 5 4 1 2 3 swapped(0, 1)
51 1 4 5 2 3 swapped(0, 2)
52 4 1 5 2 3 swapped(0, 1)
53 5 1 4 2 3 swapped(0, 2)
54 1 5 4 2 3 swapped(0, 1)
55 1 5 2 4 3 swapped(2, 3)
56 5 1 2 4 3 swapped(0, 1)
57 2 1 5 4 3 swapped(0, 2)
58 1 2 5 4 3 swapped(0, 1)
59 5 2 1 4 3 swapped(0, 2)
60 2 5 1 4 3 swapped(0, 1)
61 2 4 1 5 3 swapped(1, 3)
62 4 2 1 5 3 swapped(0, 1)
63 1 2 4 5 3 swapped(0, 2)
64 2 1 4 5 3 swapped(0, 1)
65 4 1 2 5 3 swapped(0, 2)
66 1 4 2 5 3 swapped(0, 1)
67 5 4 2 1 3 swapped(0, 3)
68 4 5 2 1 3 swapped(0, 1)
69 2 5 4 1 3 swapped(0, 2)
70 5 2 4 1 3 swapped(0, 1)
71 4 2 5 1 3 swapped(0, 2)
72 2 4 5 1 3 swapped(0, 1)
73 3 4 5 1 2 swapped(0, 4)
74 4 3 5 1 2 swapped(0, 1)
75 5 3 4 1 2 swapped(0, 2)
76 3 5 4 1 2 swapped(0, 1)
77 4 5 3 1 2 swapped(0, 2)
78 5 4 3 1 2 swapped(0, 1)
79 5 4 1 3 2 swapped(2, 3)
80 4 5 1 3 2 swapped(0, 1)
81 1 5 4 3 2 swapped(0, 2)
82 5 1 4 3 2 swapped(0, 1)
83 4 1 5 3 2 swapped(0, 2)
84 1 4 5 3 2 swapped(0, 1)
85 1 3 5 4 2 swapped(1, 3)
86 3 1 5 4 2 swapped(0, 1)
87 5 1 3 4 2 swapped(0, 2)
88 1 5 3 4 2 swapped(0, 1)
89 3 5 1 4 2 swapped(0, 2)
90 5 3 1 4 2 swapped(0, 1)
91 4 3 1 5 2 swapped(0, 3)
92 3 4 1 5 2 swapped(0, 1)
93 1 4 3 5 2 swapped(0, 2)
94 4 1 3 5 2 swapped(0, 1)
95 3 1 4 5 2 swapped(0, 2)
96 1 3 4 5 2 swapped(0, 1)
97 2 3 4 5 1 swapped(0, 4)
98 3 2 4 5 1 swapped(0, 1)
99 4 2 3 5 1 swapped(0, 2)
100 2 4 3 5 1 swapped(0, 1)
101 3 4 2 5 1 swapped(0, 2)
102 4 3 2 5 1 swapped(0, 1)
103 4 3 5 2 1 swapped(2, 3)
104 3 4 5 2 1 swapped(0, 1)
105 5 4 3 2 1 swapped(0, 2)
106 4 5 3 2 1 swapped(0, 1)
107 3 5 4 2 1 swapped(0, 2)
108 5 3 4 2 1 swapped(0, 1)
109 5 2 4 3 1 swapped(1, 3)
110 2 5 4 3 1 swapped(0, 1)
111 4 5 2 3 1 swapped(0, 2)
112 5 4 2 3 1 swapped(0, 1)
113 2 4 5 3 1 swapped(0, 2)
114 4 2 5 3 1 swapped(0, 1)
115 3 2 5 4 1 swapped(0, 3)
116 2 3 5 4 1 swapped(0, 1)
117 5 3 2 4 1 swapped(0, 2)
118 3 5 2 4 1 swapped(0, 1)
119 2 5 3 4 1 swapped(0, 2)
120 5 2 3 4 1 swapped(0, 1)

Click here to return to EXAMPLE_01.